54. Dipolare (1:1)-Addukte aus der Reaktion von 3-Amino-2*H*-azirinen mit 1,3,4-Oxadiazol- und 1,3,4-Thiadiazol-2(3*H*)-onen

von Simon M. Ametamey¹), Beverly R. Vincent²) und Heinz Heimgartner*

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

Herrn Professor Dr. Wolfgang von Philipsborn zum 60. Geburtstag gewidmet

(19.I.90)

Dipolar 1:1 Adducts from the Reaction of 3-Amino-2H-azirines with 1,3,4-Oxadiazol- and 1,3,4-Thiadiazol-2(3H)-ones

3-Amino-2*H*-azirines **1** react with 5-(trifluoromethyl)-1,3,4-oxadiazol-2(3*H*)-one (**2**) as well as with different 5-substituted 1,3,4-thiadiazol-2(3*H*)-ones (**5a**-**e**) in 2-propanol at room temperature to give dipolar 1:1 adducts of type **3** and **6**, respectively, in reasonable-to-good yields (*Schemes 3* and *6*, *Tab. 1* and 2). The structure of two of these dipolar adducts, **6a** and **6e**, which are formally donor-acceptor-stabilized azomethin imines, have been elucidated by X-ray crystallography (*Figs. 1*-4). In the reaction of **2** and sterically crowded 3-amino-2*H*-azirines **1c**-**e** with a 2-propyl and 2-propenyl substituent, respectively, at C(2), a 4,5-dihydro-1,2,4-triazin-3(2*H*)-one of type **4** is formed as minor product (*Scheme 3* and *Table 1*). Independent syntheses of these products proved the structure of **4**. Several reaction mechanisms for the formation of compounds **3** and **4** are discussed, the most likely ones are described in *Scheme 4*: reaction of **2** as an NH-acidic compound leads, *via* a bicyclic zwitterion of type **A**, to **3** as well as to **4**. In the latter reaction, a ring-expanded intermediate **B** is most probable.

1. Einleitung – Seit einigen Jahren untersuchen wir Reaktionen von 3-Amino-2*H*-azirinen 1 mit NH-aciden Heterocyclen I [1–17]. Umsetzungen treten dann ein, wenn der pK_a-Wert von I < ca. 8 ist. Neben neuartigen Ringerweiterungen zu Heterocyclen vom Typ III (*Schema 1*) [2][4][10][12][14–17] ist eine ganze Reihe überraschender Umlagerungsreaktionen zu neuen heterocyclischen Verbindungen beobachtet worden.

¹) Teil der Dissertation von S.M.A., Universität Zürich, 1989.

²) Gegenwärtige Adresse: Molecular Structure Corp., 3200A Research Forest Drive, The Woodlands, Texas 77381, USA.

Als gemeinsames Zwischenprodukt ist für alle diese Reaktionen ein Zwitterion vom Typ II anzunehmen. Je nach Substitutionsmuster und Art der Gruppen X und Y des ursprünglichen Heterocyclus I tritt in II die Spaltung der zentralen (C–N)-Bindung (\rightarrow Ringerweiterung) oder einer anderen Bindung ein. Bei der Spaltung der (C–Y)-Bindung wird eine neue zwitterionische Verbindung vom Typ IV gebildet, die sich zu V cyclisiert, wenn z.B. 1,3-Thiazolidin-2-thion als Heterocyclus I eingesetzt wird [13].

In einer vorläufigen Mitteilung wurde vor einiger Zeit die Reaktion des 1,3,4-Oxadiazol-2(3H)-ons 2 mit 3-(Dimethylamino)-2,2-dimethyl-2H-azirin (1a) beschrieben [11]. Diese Umsetzung führte zu einem stabilen dipolaren (1:1)-Addukt vom Typ IV, dessen Struktur 3a durch eine Röntgen-Kristallstrukturbestimmung ermittelt wurde (Schema 2)³). Im Falle von 3a sind die Ladungen in den zwei Teilen des Moleküls offenbar so gut stabilisiert, dass ein zu IV \rightarrow V analoger Ringschluss unterbleibt.

Um ein umfassendes Bild über die neuartigen dipolaren Verbindungen vom Typ IV zu erhalten, wurde in einer systematischen Untersuchung versucht, die Reaktion von 1 mit Verbindungen vom Typ 2 zu verallgemeinern bzw. ihre Grenzen aufzuzeigen. Deshalb wurden verschieden substituierte 3-Amino-2H-azirine 1 sowohl mit 2 als auch mit verschieden substituierten 1,3,4-Thiadiazol-2(3H)-onen umgesetzt.

2. Umsetzungen von 3-Amino-2*H*-azirinen mit 5-(Trifluoromethyl)-1,3,4-oxadiazol-2(3*H*)-on (2). – Die 3-Amino-2*H*-azirine 1b–g wurden, in analoger Weise wie 1a [11], in i-PrOH bei Raumtemperatur mit 2 umgesetzt. Dabei reagierten 1b, 1f und 1g in guten Ausbeuten zu den dipolaren (1:1)-Addukten 3b, 3f und 3g (*Schema 3, Tab. 1*), die jeweils durch Zugabe von Et_2O direkt aus dem Reaktionsgemisch ausgefällt und anschliessend umkristallisiert wurden. Erwähnenswert ist die Beobachtung, dass die Umsetzung mit dem N-Methyl-N-phenyl-Derivat 1b deutlich langsamer verlief als die

³) Stabile dipolare Addukte wurden schon früher bei Umsetzungen von 3-Amino-2*H*-azirinen mit Isothiocyanaten [18][19] und mit CS, [20][21] isoliert.

Tab. 1. Produkte und Ausbeuten der Umsetzungen von 3-Amino-2H-azirinen 1 und 3-(Trifluoromethyl)-1,3,4oxadiazol-2(3H)-on (2)										
R١	R ²	R ³	R ⁴	1	3 [%]	4 [%]				
CH,	CH,	CH,	CH,	а	a (66) ^a)	_				
CH	CH,	CH,	Ph	b	b (60)	-				
CH,	i-Pr	CH	CH,	c	c (40)	c (31)				
CH,	i-Pr	CH,	Ph	d	d (15)	d (8)				

CH,

CH,

е

f

g

e (28)

f (95)

g (83)

e (5)

entsprechende mit dem N,N-Dimethyl-Derivat **1a**, was auf die geringere Basizität bzw. Nucleophilie von 1b zurückgeführt werden kann.

CH, i-Pr CH, Ph d CH,=C(CH,) CH, CH,

CH,

CH.

Umsetzung und Ausbeute aus [11] übernommen.

Spezielle Beachtung verdienen die Umsetzungen von 2 mit den 3-Amino-2H-azirinen 1c-e. In diesen Fällen wurde als zweites Produkt jeweils ein 4.5-Dihydro-1,2,4-triazin-3(2H)-on vom Typ 4 (Schema 3) isoliert. Offenbar besteht ein Zusammenhang zwischen der Reaktivität der 3-Amino-2H-azirine 1 und dem Sich-Öffnen zweier konkurrierender Reaktionswege zu 3 bzw. 4. Während nämlich mit 1a,b,f und g, die mit 2 relativ rasch abreagieren (1-4 h bei RT.), nur die Bildung von Produkten des Typs 3 beobachtet wird, setzen sich 1c-e, die an C(2) einen sterisch anspruchsvollen Substituenten tragen, mit 2 nur langsam um (20–24 h bei Raumtemperatur). In diesen Fällen wurde zusätzlich zu 3 das Nebenprodukt 4 gebildet.

Die Struktur der Dipole 3b-g wurde durch Vergleich ihrer spektralen Daten mit denjenigen von **3a** bestimmt, während diejenige von **4c** und **4e** durch eine unabhängige Synthese in Analogie zu [22] bewiesen wurde.

Besonders charakteristisch für die Dipole vom Typ 3 ist im ¹³C-NMR-Spektrum das Auftreten von je einem q bei ca. 119 ppm mit einer Kopplungskonstanten ${}^{I}J(C,F) = 289$ Hz für die CF,-Gruppe und bei ca. 162 ppm $({}^{2}J(C,F) = 30 \text{ Hz})$ für das benachbarte C-Atom sowie, im Falle der N,N-Dimethyl-Derivate **3a,c**, e-g, 2 q im Bereich von 42-40 ppm für die beiden (N-Me)-Gruppen. Die letzteren sind ein Indiz dafür, dass das exocyclische N-Atom, an welchem die Me-Gruppen haften, Iminium-Charakter besitzt. In Übereinstimmung damit treten im IR-Spektrum (KBr) der Dipole 3a-g in der Regel zwei intensive Banden zwischen 1660 und 1620 cm⁻¹ auf.

In Schema 4 ist ein möglicher Bildungsweg für die Produkte vom Typ 3 und 4 wiedergegeben. Danach wird primär ein bicyclisches Zwitterion A als gemeinsame Zwischenstufe gebildet, welches via Weg a unter Spaltung der (C-O)-Bindung zum dipolaren 3 führt. Der Reaktionsweg b liefert unter Spaltung der zentralen (C-N)-Bindung von A das Ringerweiterungsprodukt B, welches mit einem Nucleophil unter Ringverengung zu C und nach Elimination eines Trifluoroacetyl-Derivates zu 4 reagiert. Als zweite Möglichkeit bietet sich eine Ringöffnung von B zu D an, welches unter erneutem Ringschluss zu E und nach Abspaltung der CF₃CO-Gruppe ebenfalls zu 4 führt.

CH,

a)

-(CH₂),-

-(CH₂)₆-

Formal könnte das Dihydrotriazin-3(2H)-on-Derivat 4 auch aus dem Dipol 3 via Ringschluss zum bicyclischen Aziridin F und Ringerweiterung unter Abspaltung der CF₃CO-Gruppe entstehen (*Schema 5*). Dieser attraktive Reaktionsverlauf ist jedoch ausgeschlossen worden, da das Produkt 3c unter den Reaktionsbedingungen für die Bildung von 4c stabil ist.

3. Umsetzungen von 3-Amino-2H-azirinen mit 1,3,4-Thiadiazol-2(3H)-onen. – In analoger Weise wie 1,3,4-Oxadiazol-2(3H)-on 2 reagierten auch die 1,3,4-Thiadiazol-2(3H)-one 5a-e mit 3-Amino-2H-azirinen 1 in i-PrOH bei Raumtemperatur zu Dipolen des Typs 6 (Schema 6). Die Ausbeuten der Umsetzungen sind in Tab. 2 zusammengestellt.

Die Struktur der Produkte **6a** und **6e** wurde jeweils durch eine Röntgen-Kristallstrukturbestimmung gesichert, diejenige von **6b–d** und **6f/f** durch Vergleich der spektralen Daten bestimmt.

495

 Tab. 2. Produkte und Ausbeuten der Umsetzungen von 3-Amino-2H-azirinen 1 und 1,3,4-Thiadiazol-2(3H)onen (5a-e)

1	5	6	Ausbeute [%]
a	a $\mathbb{R}^{5} = \mathbb{C}\mathbb{F}_{2}$	a $R^1 = R^2 = R^3 = R^4 = CH$,	76
a	b $\mathbf{R}^{5} = \mathbf{CN}^{3}$	b $R^1 = R^2 = R^3 = R^4 = CH_1^3$	83
a	$\mathbf{c} \ \mathbf{R}^{5} = \mathbf{MeSO}_{2}$	c $R^{1} = R^{2} = R^{3} = R^{4} = CH_{1}^{3}$	95
a	d $\mathbf{R}^{5} = \mathbf{CCl}_{1}^{2}$	d $R^1 = R^2 = R^3 = R^4 = CH_1^3$	54
a	$\mathbf{e} \ \mathbf{R}^{s} = \mathbf{M}\mathbf{e}\mathbf{O}$	e $R^1 = R^2 = R^3 = R^4 = CH_1^3$	84
с	a $\mathbb{R}^5 = \mathbb{CF}_3$	$f/f' R^1 = R^3 = R^4 = CH_3, R^2 = i - Pr$	54

Wie in der Einleitung erwähnt, ist angenommen worden, dass die Stabilität der dipolaren Produkte vom Typ IV wesentlich durch die Stabilisierung der negativen Ladung bestimmt wird. Deshalb war es überraschend, dass auch das Methoxy-Derivat 5e mit 1a in guten Ausbeuten zu 6e reagierte. Offensichtlich spielt es keine grosse Rolle, ob an C(5) des Heterocyclus 5 ein Akzeptor- oder Donor-Substituent haftet. Vielmehr scheint die gute Delokalisierung der negativen und der positiven Ladung auch für das Methoxy-Derivat 6e gegeben. Diese Delokalisierung hat eine verringerte Nucleophilie des S-Atoms zur Folge, weshalb kein Ringschluss unter Angriff am Amidinium-C-Atom erfolgt und die Reaktion auf der Stufe des Dipols stehen bleibt.

Die aus den Röntgendaten ermittelten Molekülstrukturen und Packungsdichten von **6a** und **6e** sind in den *Fig. 1–4* wiedergegeben.

Fig. 1. Stereoprojektion der Molekülstruktur von 6a

496

Fig. 2. Packungsdichte von 6a

Fig. 3. Stereoprojektion der Molekülstruktur von 6e

Fig. 4. Packungsdichte von 6e

Der 5gliedrige Ring der beiden Verbindungen mit den Ringatomen N(1), C(2), N(3), C(4) und C(5) ist ungefähr planar; die Atome O(2) und N(11) liegen auch in dieser Ebene. Die ebenfalls planare Me₂N-Gruppe ist nur wenig aus der Ringebene gedreht (Torsionswinkel C(13)–N(11)–C(5)–N(1) = 6,3 bzw. $-13,4^{\circ}$, C(12)–N(11)–C(5)–N(1) = -169,3 bzw. $171,5^{\circ}$). Die Bindungslängen C(5)–N(11) (1,307 bzw. 1,309 Å) und C(5)–N(1) (1,337 bzw. 1,340 Å) deuten auf das Vorliegen einer Iminium-Gruppe bzw.

auf eine ausgeprägte Konjugation zwischen N(11) und N(1) hin, obwohl N(1) nicht planar ist (in **6a** z.B. liegt N(6) 0,25 Å ausserhalb der Ringebene). Die fünf Atome N(1), N(6), C(7), S und C(8) bzw. O(8) der Seitenkette bilden eine zweite Ebene, welche nahezu orthogonal zur ersten steht (Winkel zwischen beiden Ebenen 83,5° bzw. 87,3°).

Zusammenfassend kann festgehalten werden, dass die Strukturen der beiden Dipole 6a und 6e im wesentlichen gleich sind und sich kaum von der früher für 3a bestimmten unterscheiden.

Im Gegensatz zu den beschriebenen Reaktionen des Oxadiazol-2(3H)-ons 2 mit den Azirinen 1c-e, die neben den dipolaren Verbindungen vom Typ 6 auch Dihydrotriazin-3(2H)-one 4 (*Schema 4*) lieferten, setzte sich 1c mit 5a zu einem Gemisch der stereoisomeren stabilen Dipol 6f/f' um. Es konnte kein 4 entsprechendes Dihydrotriazin-3(2H)-on nachgewiesen werden. Eine Zuordnung der Konfiguration der im Verhältnis von 2:1 vorliegenden Isomeren, bei denen es sich offenbar um *cis, trans*-Isomere handelt (Lage der Me- bzw. i-Pr-Gruppe bezüglich der Seitenkette), wurde nicht vorgenommen.

Im Zusammenhang mit der Abklärung des Reaktionsmechanismus wurde **5a** auch mit dem 1-(¹⁵N)-markierten 3-(Dimethylamino)-2,2-dimethyl-2*H*-azirin (**1a**^{*}) umgesetzt. Erwartungsgemäss war in **6a**^{*} nur N(3) (*d* bei –270,4 ppm, ¹*J*(N,H) = 90,5 Hz) markiert. Die vier N-Atome des nichtmarkierten Produktes **6a** absorbieren bei –90,9 (*s*, N(1)), –198,2 (*s*, CF₃CSN), –270,3 (*d*, N(3)) und –273,9 ppm (*s*, Me₂N). Im ¹³C-NMR-Spektrum von **6a**^{*} weisen die Atome C(2) und C(4) eine ¹*J*(C,N)-Kopplung mit dem ¹⁵N-Atom auf, was ebenfalls die Markierung von N(3) beweist.

3. Hydrolyse einiger (1:1)-Addukte. – Einen chemischen Beweis für die Strukturen 3a und 6e lieferte die Hydrolyse mit wässeriger 2N HCl in MeOH (*Schema 7*). Im Falle von 3a wurde nach 2 h bei 55° in 53% Ausbeute das Hydantoin 7 erhalten. In analoger Weise lieferte 6e das Hydantoin 8 (58%), wobei in diesem Beispiel die Reaktion schon bei Raumtemperatur erfolgte.

Überraschend war das Ergebnis der Hydrolyse von **6a**. Mit wässeriger 2N HCl in MeOH bei Raumtemperatur wurde in 60% Ausbeute das 2-Methyl-2-{[5-(trifluoromethyl)-1,3,4-thiadiazol-2-yl]amino}propionat (**9**, *Schema* 8) erhalten. Ein möglicher Bildungsweg für dieses unerwartete Produkt könnte *via* eine Protonierung des Zwitterions G (*cf. Schema 6*) zu H führen, welches unter H_2O -Abspaltung und Hydrolyse der Iminium-Gruppe zu J und nach methanolischer Ringöffnung zu 9 reagiert.

Die Wiederholung der Reaktion mit dem ¹⁵N-markierten **6a**^{*} lieferte markiertes **9**^{*} in ähnlicher Ausbeute. Im ¹⁵N-NMR-Spektrum dieses Produktes erscheint ein *d* bei –278,1 ppm (¹*J*(N,H) = 92,5 Hz), was zeigt, dass die NH-Gruppe markiert ist. Die nichtmarkierte Verbindung **9** weist Signale bei –1,7, –17,5 und –277,5 ppm (*s* (N(4)), *s* (N(3)) und *d* (NH)) auf. Das ¹³C-NMR-Spektrum von **9**^{*} bestätigte die Lage der Markierung: sowohl C(2') als auch das quartäre C-Atom in α -Position zur Ester-(C=O)-Gruppe weisen eine ¹*J*(C,N)-Kopplung (24,4 bzw.11,8 Hz) mit dem ¹⁵N-Atom auf. Für die Struktur von **9**^{*} spricht auch die Resonanzfrequenz von 157,9 ppm für C(5') mit einer ²*J*(C,F)-Kopplung von 39,8 Hz (vgl. ¹³C-NMR Spektrum von **6a** sowie Tab. 3 in [25]).

4. Reduktion des (1:1)-Adduktes 6a mit NaBH₄. – Die NaBH₄-Reduktion der zwitterionischen Verbindung 6a in i-PrOH führte in 38% Ausbeute zum bicyclischen Produkt 10 (*Schema 9*). Für seine Bildung kann der folgende Reaktionsmechanismus formuliert werden: Nucleophiler Angriff des Hydrid-Ions am Amidinium-C-Atom von 6a führt zum Zwischenprodukt K, welches unter Eliminierung von Me₂NH den Ringschluss zu 10 eingeht. Charakteristisch für die Struktur 10 sind das ¹H-NMR-Spektrum mit einem *s* bei 5,97 ppm für H–C(7a) und das ¹³C-NMR Spektrum mit einem *d* bei 81,8 ppm für C(7a).

5. Zusammenfassung und Diskussion. – Die voranstehend beschriebenen Umsetzungen von 3-Amino-2H-azirinen 1 mit den NH-aciden Heterocyclen 2 und 5 führten generell zu dipolaren (1:1)-Addukten vom Typ IV. Dabei ist weder bei den Reaktionszeiten und Ausbeuten noch bei den Kristallstrukturen der Produkte ein wesentlicher Unterschied zwischen dem 1,3,4-Oxadiazol-2(3H)-on 2 und den 1,3,4-Thiadiazol-2(3H)-onen **5a-e** zu erkennen. Insbesondere ist bemerkenswert, dass auch die Dipole 6a-f, die eine Thioacetamidat-Gruppe aufweisen, keinen Ringschluss zu Bicyclen vom Typ V (Schema 1) eingehen. Eine solche Cyclisierung tritt dagegen spontan ein, wenn es sich beim Nucleophil der Seitenkette von IV um ein Thiolat handelt [13]. Alle Versuche, den entsprechenden Ringschluss im Falle der Addukte 6a oder 6e durch Erhitzen zu erzwingen, blieben erfolglos⁴). Dieser Befund muss wohl mit der sehr guten Delokalisierung der Ladungen in Allyl-Systemen mit zwei Heteroatomen und mit der nahezu orthogonalen Orientierung der Ebenen dieser Allyl-Systeme erklärt werden. Die Erwartungen, beim Übergang vom CF3-Derivat 6a zum MeO-Derivat 6e Veränderungen der Kristallstruktur in Richtung auf die Geometrie des Übergangszustandes der erhofften Cyclisierung ($IV \rightarrow V$, Schema 1) zu beobachten, wurden nicht erfüllt.

Die hier beschriebenen Umsetzungen sind in Übereinstimmung mit dem in Schema 1 skizzierten Reaktionsmechanismus (s. a. Schema 4). Bei dem nicht direkt nachgewiesenen Zwitterion II handelt es sich offenbar um die Schlüsselverbindung. Während in der Regel ausgehend von diesem Zwitterion eine Ringerweiterung beobachtet wird, so erfolgt bevorzugt die Ringöffnung zum Dipol vom Typ IV, wenn es sich bei X um eine gute Abgangsgruppe handelt.

Wie in Schema 4 formuliert, kann im Falle der Umsetzungen mit 2 aus dem entsprechenden Zwitterion A sowohl das dipolare (1:1)-Addukt vom Typ IV als auch das in einigen Fällen erhaltene Triazin-Derivat 4 gebildet werden. Dabei würden beide typischen Reaktionswege des zwitterionischen Zwischenproduktes, nämlich die Ringerweiterung ($\rightarrow B \rightarrow 4$) und die Bildung des dipolaren Adduktes ($\rightarrow 3$), als Konkurrenzreaktionen ablaufen.

Wir danken Herrn H. Frohofer für IR-Spektren und Elementaranalysen, Frau Dr. A. Lorenzi und Herrn N. Bild für Massenspektren und den Herren Dr. R. Hollenstein, Dr. R.W. Kunz, Dr. U. Piantini und M. Vöhler für NMR-Spektren. Für die Überlassung der Heterocyclen **5a-d** sind wir Herrn Dr. H. Kristinsson, Ciba-Geigy AG, Basel, und für **5e** Herrn Dr. P. Vittorelli, Ciba-Geigy AG, Monthey, zu Dank verpflichtet. Dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung, der F. Hoffmann-La Roche AG, Basel, der Prof. Hans-E.-Schmid-Stiftung und dem Anna-Feddersen-Wagner-Fonds sei für finanzielle Unterstützung gedankt.

Experimenteller Teil

Allgemeines. S. [26][27]. Wenn nicht anders vermerkt, IR-Spektren in KBr, ¹H-NMR-Spektren in (D₆)DMSO bei 90MHz (*Varian-EM-390*) oder 200MHz (*Varian-XL-200*) und ¹³C-NMR-Spektren bei 25,2 MHz (*Varian-XL-100*) oder 50,4 MHz (*Varian-XL-200*). ¹⁵N-NMR-Spektren in (D₆)DMSO bei 40,6 MHz auf einem Bruker-AM-400-Gerät. Zur Identifikation von NH wurde die Polarisationstransfer-Methode INEPT [28] benutzt. Dann wurde Cr(acac)₃ zugesetzt (*ca.* 30 mg/ml), um die Resonanz aller N-Atome zu messen. Als Standard diente eine Kapillare mit CH₃NO₂ (= 0,0 ppm), dessen Resonanzfrequenz im betreffenden Lsgm. auch

⁴) Die Addukte erwiesen sich in Toluol (Bombenrohr) bis zu Temperaturen von *ca*. 160° als stabil. Bei höheren Temperaturen trat Zersetzung ein.

für die $Cr(acac)_3$ -haltigen Lsg. verwendet wurde (s. [15]). Massenspektren (MS) auf einem Varian-MAT-711oder Varian-MAT-112- Gerät bei 70 eV (Direkteinlass); Angabe der Pike in m/z (>10%, ausser Molekülion) ab m/z 40. CI-MS: Reaktandgas: 2-Methylpropan. Abkürzungen: $Cr(acac)_3 = Chrom(III)acetylacetonat. Die$ Synthesen der verwendeten 3-Amino-2H-azirine 1 sind in [15] (1a^{*}), [29] (1a, 1b, 1e, 1g), [30] (1c), bzw. [31](1f) beschrieben (vgl. auch [32]), diejenigen der Heterocyclen 5 in [25]).

1. Umsetzung von 5-(Trifluoromethyl)-1,3,4-oxadiazol-2(3H)-on (2) mit 3-Amino-2H-azirinen 1. – 1.1. 3,4-Dihydro-4,4-dimethyl-5-(N-methyl-N-phenylamino)-2-oxo-2H-imidazolium-trifluoroacetamidat (3b). Eine Lsg. von 154 mg (1 mmol) 2 in 3 ml i-PrOH wurde mit 191 mg (1,1 mmol) 2,2-Dimethyl-3-(N-methyl-N-phenylamino)-2H-azirin (1b) versetzt und 4 h bei RT. unter N₂ gerührt. Durch Zugabe von Et₂O wurde das gebildete Produkt ausgefällt, abfiltriert, aus i-PrOH umkristallisiert und i.HV. getrocknet: 190 mg (60%) 3b. Farblose Kristalle. Schmp. 267,5–269,5°. IR: 3530m, 3310m, 3080m, 2830w, 1792s, 1650s, 1620s, 1590s, 1496m, 1455m, 1418w, 1390m, 1220m, 1205m, 1180s, 1155m, 1135s, 1076w, 1060w, 1035w, 1005w, 992w, 942w, 920m, 774m, 755w, 735w, 692m. 'H-NMR: 9,14 (br. s, NH); 7,5–7,4 (m, 5 arom. H); 3,66 (s, CH₃N); 1,4 (br.s, (CH₃)₂C). MS: 329 (23, $[M + 1]^*$), 288 (14), 219 (15), 218 (100). Anal. ber. für C₁₄H₁₅F₃N₄O₂ (328,30): C 51,22, H 4,61, N 17,01; gef.: C 51,46, H 4,71, N 16,80.

1.2. 5-(Dimethylamino)-3,4-dihydro-4-isopropyl-4-methyl-2-oxo-2H-imidazolium-trifluoroacetamidat (3c) und 6-(Dimethylamino)-4,5-dihydro-5-isopropyl-5-methyl-1,2,4-triazin-3(2H)-on (4c). Eine Lsg. von 154 mg (1 mmol) 2 in 5 ml i-PrOH wurde mit 141 mg (1,1 mmol) 3-(Dimethylamino)-2-isopropyl-2-methyl-2H-azirin (1c) versetzt und 20 h bei RT. gerührt. Das ausgefallene Produkt wurde abfiltriert, mit wenig kaltem MeCN und MeOH gewaschen und i.HV. getrocknet: 42 mg (31%) 3c. Aus der Mutterlauge wurden nach dem Abdampfen des Lsgm. und präp. DC (Kieselgel, CH₂Cl₂/MeOH 8:1) 118 mg (40%) 4c isoliert. Bei Umsetzungen in MeCN und i-PrOH/H₂O wurden die gleichen Produkte in ähnlichen Ausbeuten erhalten.

3c: Farblose Kristalle. Schmp. >300°. IR: 3440w (br.), 3220m, 3140m, 2970w, 1795s, 1660s, 1635s (br.), 1470w, 1450w, 1422w, 1385w, 1370w, 1340w, 1292m, 1195m, 1145m, 1105w, 1082w, 1065w, 1050w, 965w, 920w, 840w, 780m, 742w, 703w. 'H-NMR: 8,90 (br.s, NH); 3,47, 3,34 (2br.s, teilweise von H₂O überdeckt, $(CH_3)_2N$); 2,43 (*sept.*, J = 7, teilweise von DMSO überdeckt, $(CH_3)_2CH$); 1,64 (*s*, $CH_3-C(4)$); 0,97, 0,81 (2*d*, J = 7, $(CH_3)_2CH$). ¹³C-NMR: 166,6 (*s*, C(5)); 161,4 (*q*, ² $_J$ (CF) = 29,8 (CF₃C=O); 151,8 (*s*, C(2)); 118,6 (*q*, ¹ $_J$ (CF) = 288,8, CF₃); 64,6 (*s*, C(4)); 42,1, 41,1 (2*q*, (CH₃)₂N); 32,7 (*d*, (CH₃)₂CH); 21,8 (*q*, $CH_3-C(4)$); 165, 16,4 (2*q*, (CH₃)₂CH). MS: 294 (30, *M*⁺), 279 (20), 252 (48), 251 (24), 226 (10), 225 (72), 198 (29), 183 (19), 182 (26), 155 (100), 141 (22), 140 (87), 138 (13), 126 (15), 112 (12), 99 (35), 97 (15), 96 (13), 86 (12), 84 (10), 74 (11), 72 (14), 71 (29), 70 (20), 69 (24), 57 (12), 56 (14), 44 (27), 43 (24), 42 (58), 41 (36). Anal. ber. für C₁₁H₁₇F₁A₀O, (294,37): C 44,88, H 5,82, N 19,06; gef.: C 44,63, H 6,04, N 18,81.

4c: Farblose Kristalle. Schmp. 296–298°. IR: 3330w, 3220m, 3075m, 2965m, 1690s, 1610m, 1510m, 1462m, 1455m, 1435m, 1392m, 1385m, 1355m, 1320w, 1248w, 1182w, 1170w, 1155w, 1142m, 1100w, 1086w, 1052w, 1012w, 952m, 940m, 836w, 810m, 762w, 735m, 630w. ¹H-NMR: 9,00, 6,78 (2 br.s, 2 NH); 2,65 (s, (CH₃)₂N); 2,01 (*sept.*, J = 7, (CH₃)₂CH); 1,32 (s, CH₃–C(5)); 0,87, 0,82 (2d, J = 7, (CH₃)₂CH). ¹³C-NMR: 152,4, 150,6 (2s, C(2), C(6)); 58,6 (s, C(5)); 41,0 (q, (CH₃)₂N); 35,8 (d, (CH₃)₂CH); 23,9 (q, CH₃–C(5)); 17,4, 15,0 (2q, (CH₃)₂CH). MS: 198 (27, M^+), 155 (100), 99 (11), 42 (15). Anal. ber. für C₉H₁₈N₄O (198,27): C 54,52, H 9,15, N 28,26; gef.: C 54,69, H 9,00, N 28,50.

1.3. 3,4-Dihydro-4-isopropyl-4-methyl-5-(N-methyl-N-phenylamino)-2-oxo-2H-imidazolium-trifluoroacetamidat (3d) und 4,5-Dihydro-5-isopropyl-5-methyl-6-(N-methyl-N-phenylamino)-1,2,4-triazin-3(2H)-on (4d). Eine Lsg. von 154 mg (1 mmol) 2 in 5 ml i-PrOH wurde mit 202 mg (1 mmol) 2-Isopropyl-2-methyl-3-(Nmethyl-N-phenylamino)-2H-azirin (1d) versetzt und 1 d bei RT. unter N₂ gerührt. Das ausgefallene Produkt wurde abfiltriert, mit MeCN gewaschen und i.HV. getrocknet: 20 mg (8%) 3d. Aus der Mutterlauge wurden nach Abdampfen des Lsgm. und präp. DC (Kieselgel, CH_2CI_2 / MeOH 8:1) 55 mg (15%) 4d und 73 mg (36%) nicht umgesetztes 1d isoliert.

3d: Farblose Kristalle. Schmp. 220–223°. IR: 3430w, 3230w, 3110w, 2975w, 2880w, 1800s, 1755w, 1640s, 1586s, 1495s, 1460w, 1415w, 1392w, 1372w, 1332w, 1292m, 1210m, 1180s, 1135s, 1043w, 1080w, 1068w, 1035w, 1006w, 945w, 924w, 905w, 840w, 808m, 780m, 768w, 745m, 708m, 700m. ¹H-NMR: 9,12 (br.s, NH); 7,65–7,25 (m, 5 arom. H); 3,67 (s, CH₃N); 2,55–2,45 (m, teilweise überdeckt von DMSO, (CH₃)₂CH)); 1,05–0,9 (br.s, 2br.d, CH₂–C(5), (CH₃), CH). CI-MS: 357 ([M + 1]⁺).

4d: Farblose Kristalle. Schmp. 271–274°. IR: 3330w, 3225m, 3075m, 2965m, 1688s, 1610w, 1592m, 1510w, 1490m, 1450m, 1390w, 1382w, 1354m, 1320w, 1290w, 1210w, 1170w, 1118m, 1085w, 1072w, 1036w, 1022w, 952w, 920w, 880w, 835w, 800w, 775w, 720w, 708w. 'H-NMR: 9,42 (d, J = 2,3, NH); 7,35–7,25 (m, 2 arom. H); 7,1–7,0 (m, 3 arom. H, NH); 3,00 (s, CH₄N); 1,79 (*sept.*, J = 7, (CH₄)₂CH); 0,95 (s, CH₄–C(5));

0,88, 0,78 (2*d*, J = 7, (CH₃)₂CH). ¹³C-NMR: 153,2, 149,7, 149,4 (3*s*, C(2), C(6), arom. C); 129,3, 123,6, 122,7 (3*d*, 5 arom. C); 60,2 (*s*, C(5)); 43,1 (*q*, CH₃N); 36,4 (*d*, (CH₃)₂CH); 23,5 (*q*, CH₃-C(5)); 17,8, 15,5 (2*q*, (CH₃)₂CH). MS: 260 (16, M^*), 218 (13), 217 (100), 77 (15), 42 (11). Anal. ber. für C₁₄H₂₀N₄O (260,46): C 64,56, H 7,74, N 21,52; gef.: C 64,70, H 7,76, N 21,36.

1.4. 5-(Dimethylamino)-3,4-dihydro-4-methyl-2-oxo-4-(propen-2-yl)-2H-imidazolium-trifluoroacetamidat (3e) und 6-(Dimethylamino)-4,5-dihydro-5-methyl-5-(propen-2-yl)-1,2,4-triazin-3(2H)-on (3e). Eine Lsg. von 154 mg (1 mmol) 2 in 3 ml i-PrOH wurde mit 140 mg (1 mmol) 3-(Dimethylamino)-2-methyl-2-(propen-2-yl)-2H-azirin (1e) versetzt, 1 d bei RT. unter N_2 gerührt, das Lsgm. abgedampft und der Rückstand mittels präp. DC (Kieselgel, MeOH/CH₂Cl₂ 1:8) gereinigt: 82 mg (28%) 3e und ca. 10 mg (5%) 4e.

3e: Farblose Kristalle. Schmp. 259,1–263,8°. IR: 3430*m*, 3250*w*, 3080*w*, 2980*w*, 2930*w*, 2830*w*, 1790*s*, 1670*s*, 1640*s*, 1446*w*, 1415*w*, 1385*w*, 1290*m*, 1200*s*, 1185*s*, 1142*s*, 1092*m*, 1057*m*, 1010*w*, 972*w*, 940*w*, 928*w*, 865*w*, 838*w*, 782*m*, 740*w*, 695*w*. ¹H-NMR: 9,15 (br. *s*, NH); 5,4–5,3 (*m*, CH₂=C); 3,50, 3,22 (2*s*, (CH₃)₂N); 1,77 (*s*, 2 CH₃). ¹³C-NMR: 164,5 (*s*, C(5)); 161,9 (*q*, ²*J*(C,F) = 30,1, CF₃C=O); 151,7 (*s*, C(2)); 140,7 (*s*, CH₂=C); 118,7 (*q*, ¹*J*(C,F) = 288,8, CF₃); 116,6 (*t*, CH₂=C); 63,4 (*s*, C(4)); 41,4, 40,5 (2*q*, (CH₃)₂N); 21,2, 17,8 (2*q*, CH₃). MS: 292 (<1, *M*⁺), 200 (10), 199 (76), 193 (21), 135 (40), 117 (15), 59 (9), 57 (100), 43 (18). Anal. ber. für C, H, F, N, O₃ (299,27): C 45,20, H 5,17, N 19,17; gef.: C 45,16, H 4,99, N 19,08.

4e: Farblose Kristalle. Schmp. 246,5–250°. IR: 3220*m*, 3070*m*, 2970*w*, 1690*s*, 1615*m*, 1510*m*, 1448*m*, 1385*w*, 1366*m*, 1248*w*, 1155*w*, 1130*m*, 1100*w*, 1058*w*, 960*w*, 943*w*, 918*w*, 904*w*, 700*w*. ¹H-NMR: 9,05, 7,01 (2br. *s*, 2 NH); 4,89, 4,85 (2*s*, CH₂=C); 2,58 (*s*, (CH₃)₂N); 1,74, 1,43 (2*s*, 2 CH₃). MS: 196 (100, *M*⁺), 181 (10), 155 (27), 125 (11), 111 (13), 109 (13), 83 (14), 82 (10), 71 (26), 68 (17), 55 (10), 44 (13), 42 (36), 41 (14).

1.5. 5'-(Dimethylamino)-3',4'-dihydro-2'-oxospiro[cyclopentan-1,4'-[2H]imidazolium]-trifluoroacetamidat (3f). Eine Lsg. von 154 mg (1 mmol) 2 in 5 ml i-PrOH wurde mit 138 mg (1 mmol) 3'-(Dimethylamino)spiro[cyclopentan-1,2'-[2H]azirin] (1f) versetzt und 1 h bei RT. unter N, gerührt. Durch Zugabe von Et,O wurde das Produkt vollständig ausgefällt, abfiltriert, mit viel Et,O gewaschen und i.HV. getrocknet: 277 mg (95%) 3f. Farblose Kristalle. Schmp. 266–268,5°. IR: 3470m, 3230w, 3120w, 2970w, 2870w, 1778s, 1742w, 1660s, 1622s, 1615s, 1455w, 1416w, 1360m, 1308m, 1285m, 1265w, 1205m, 1185m, 1140s, 1088w, 1042w, 932w, 910w, 870m, 778m, 760w, 738w, 692w. 'H-NMR: 9,34 (br.s, NH); 3,50, 3,19 (2br.s, (CH,),N); 1,9-1,85 $(m, 4 \text{ CH}_{2})$. ¹³C-NMR: 165,6 (s, C(5)); 161,8 $(q, {}^{2}J(C,F) = 30, CF,C=O)$; 151,2 (s, C(2)); 118,8 $(q, {}^{4}J(C,F) = 30, CF,C=O)$; 151,2 (s, C(2)); 118,8 $(q, {}^{4}J(C,F) = 30, CF,C=O)$; 151,2 (s, C(2)); 118,8 $(q, {}^{4}J(C,F) = 30, CF,C=O)$; 151,2 (s, C(2)); 118,8 $(q, {}^{4}J(C,F) = 30, CF,C=O)$; 151,2 (s, C(2)); 118,8 $(q, {}^{4}J(C,F) = 30, CF,C=O)$; 151,2 (s, C(2)); 118,8 $(q, {}^{4}J(C,F) = 30, CF,C=O)$; 151,2 (s, C(2)); 118,8 $(q, {}^{4}J(C,F) = 30, CF,C=O)$; 151,2 (s, C(2)); 118,8 $(q, {}^{4}J(C,F) = 30, CF,C=O)$; 151,2 (s, C(2)); 118,8 $(q, {}^{4}J(C,F) = 30, CF,C=O)$; 151,2 (s, C(2)); 118,8 $(q, {}^{4}J(C,F) = 30, CF,C=O)$; 151,2 (s, C(2)); 118,8 $(q, {}^{4}J(C,F) = 30, CF,C=O)$; 151,2 (s, C(2)); 118,8 $(q, {}^{4}J(C,F) = 30, CF,C=O)$; 151,2 (s, C(2)); 118,8 $(q, {}^{4}J(C,F) = 30, CF,C=O)$; 151,2 (s, C(2)); 118,8 $(q, {}^{4}J(C,F) = 30, CF,C=O)$; 151,2 (s, C(2)); 118,8 $(q, {}^{4}J(C,F) = 30, CF,C=O)$; 151,2 (s, C(2)); 151,2 288,6, CF₁); 67,2 (s, C(4')); 42,4, 41,3 (2q, (CH₁),N); 38,1, 25,7, 25,5 (3t, 4 CH₂). ¹⁵N-NMR: -176,1 (s, N(1)); -204,3 (s, CF,CON); -268,4 (d, N(3)); -276,9 (s, (CH,),N). MS: 293 (85, [M+1]*), 252 (49), 251 (99), 250 (20), 238 (12), 223 (20), 221 (11), 205 (27), 182 (34), 181 (83), 180 (34), 166 (23), 153 (27), 152 (42), 141 (11), 140 (100), 139 (20), 138 (66), 137 (67), 136 (23), 135 (28), 126 (12), 125 (33), 124 (54), 123 (52), 114 (17), 112 (21), 111 (16), 110 (47), 109 (42), 108 (42), 107 (24), 99 (23), 98 (33), 97 (15), 96 (15), 95 (20), 94 (24), 85 (10), 84 (21), 83 (33), 82 (22), 81 (20), 80 (10), 73 (11), 72 (20), 71 (48), 70 (67), 69 (65), 68 (22), 67 (49), 66 (11), 57 (14), 56 (17), 55 (29), 54 (27), 53 (11), 45 (12), 44 (97), 43 (42), 42 (45), 41 (40). Anal. ber. für C₁₁H₁₅F₃N₄O₂ (292,35): C 45,19, H 5,17, N 19,20; gef.: C 44,89, H 5,40, N 19,46.

1.6. 5'-(Dimethylamino)-3',4'-dihydro-2'-oxospiro[cycloheptan-1,4'-[2H]imidazolium]-trifluoroacetamidat (**3g**). Eine Lsg. von 154 mg (1 mmol) **2** in 3 ml i-PrOH wurde mit 170 mg (1 mmol) 3'-(Dimethylamino)spiro-[cycloheptan-1,2'-[2H]azirin] (**1g**) versetzt und 5 h unter N₂ bei RT. gerührt. Nach dem Abdampfen des Lsgm. wurde der Rückstand in Et₂O aufgenommen, kurz gerührt, ausgefallene Kristalle mit MeCN gewaschen und i.HV. getrocknet: 265 mg (83%) **3g**. Farblose Kristalle. Schmp. 259–264°. IR: 3210*m*, 3160*m*, 2930*m*, 2860*w*, 1810s, 1660s, 1635s, 1445*m*, 1425*w*, 1365*m*, 1352*w*, 1310*m*, 1280*m*, 1200s, 1185s, 1100*m*, 1075*w*, 1040*w*, 920*w*, 860*m*, 776*m*, 758*w*, 735*w*, 695*w*. 'H-NMR: 9,38 (br.s, NH); 3,38 (br.s, (CH₃)₂N); 1,9–1,45 (*m*, 6 CH₂). ¹³C-NMR: 167,9 (*s*, C(5)); 161,5 (*q*, ²/(C,F) = 29,8, CF₃C=O); 151,8 (*q*, C(2)); 118,9 (*q*, ¹/(C,F) = 288,5, CF₃); 64,6 (*s*, C(4')); 42,6, 41,8 (2br.s, (CH₃)₂N); 36,2, 27,5, 23,4 (3*t*, 6 CH₂). MS: 320 (<1, M⁺), 226 (13), 225 (100), 168 (11), 167 (97). Anal. ber. für C₁₃H₁₉F₃N₄O₂ (320,32): C 48,74, H 6,00, N 17,50; gef.: C 48,89 H 6,27, N 17,53.

2. Umsetzung von 1,3,4-Thiadiazol-2(3H)-onen 5 mit 3-Amino-2H-azirinen 1. – 2.1. 5-(Dimethylamino)-3,4-dihydro-4,4-dimethyl-2-oxo-2H-imidazolium-trifluorothioacetamidat (6a). Eine Lsg. von 171 mg (1 mmol) 5-(Trifluoromethyl)-1,3,4-thiadiazol-2(3H)-on (5a) in 5 ml i-PrOH wurde mit 112 mg (1 mmol) 3-(Dimethylamino)-2,2-dimethyl-2H-azirin (1a) versetzt und 2 h bei RT. unter N₂ gerührt. Durch Zugabe von Et₂O wurde das Produkt ausgefällt, aus MeCN umkristallisiert und i.HV. getrocknet: 235 mg (76%) 6a. Farblose Kristalle. Schmp. 246,5–250°. IR: 3220w, 3150m, 3110w, 2985w, 2950w, 1788s, 1730w, 1655s, 1455m, 1435m, 1405w, 1375w, 1290s, 1182s, 1132s, 1095m, 1052w, 1020m, 992w, 965w, 895w, 875m, 758w, 710w, 695w, 650w. ¹H-NMR ((D_{q})DMSO/CD₃OD): 3,33 (*s*, (CH₃)₂N); 1,80, 1,70 (2*s*, (CH₃)₂C). ¹³C-NMR: 185,5 (*q*, ²*J*(C,F) = 31,2, CF₃C=S); 166,1 (*s*, C(5)); 149,2 (*s*, C(2)); 119,7 (*q*, ¹*J*(C,F) = 278,7, CF₃); 58,6 (*s*, C(4)); 42,0, 41,6 (2*q*, (CH₃)₂N); 25,8, 23,8 (2*q*, (CH₃)₂C). ¹⁵N-NMR: -90,9 (*s*, N(1)); -198,2 (*s*, CF₃CON); -270,3 (*d*, N(3)); -273,9 (*s*, (CH₃)₂N). MS: 282 (1, *M*⁺), 238 (17), 222 (10), 198 (16), 196 (13), 195 (60), 154 (24), 140 (13), 113 (15), 99 (10), 84 (18), 83 (12), 72 (44), 71 (41), 70 (35), 69 (38), 68 (19), 58 (13), 56 (21), 45 (94), 44 (83), 43 (16), 42 (100), 41 (41). Anal. ber. für C₉H₁₃F₃N₄OS (282,29): C 38,29, H 4,64, N 19,85; gef.: C 38,51, H 4,88, N 20,04.

Für die Röntgen-Kristallstrukturbestimmung wurde eine Probe von 6a aus MeCN kristallisiert.

In analoger Weise wurde **5a** mit dem 1-(¹⁵N)-markierten Aminoazirin **1a'** umgesetzt. **6a'**: ¹³C-NMR: 185,7 (q, ²*J*(C,F) = 30,7, CF₃C=S); 166,2 (s, C(5)); 149,41, 149,42 (d,s, ¹*J*(C,N) = 21,8, C(2)); 119,9 (q, ¹*J*(C,F) = 278,6, CF₃); 58,82, 58,83 (d,s, ¹*J*(C,N) = 9,2, C(4)); 42,3, 41,8 (2q, (CH₃)₂N); 26,0, 24,0 (2q, (CH₃)₂C). ¹⁵N-NMR: -270,4 (d, ¹*J*(N,H) = 90,5).

2.2. 5-(Dimethylamino)-3,4-dihydro-4,4-dimethyl-2-oxo-2H-imidazolium-cyanothioformamidat (**6b**). Eine Lsg. von 127 mg (1mmol) 5-Cyano-1,3,4-thiadiazol-2(3*H*)-on (**5b**) in 5 ml i-PrOH wurde mit 112 mg (1 mmol) **1a** versetzt, 2 h bei RT. gerührt, nach Abdampfen des Lsgm. in Et₂O aufgenommen, nicht gelöstes Material abfiltriert, mehrmals mit Et₂O gewaschen und i.HV. getrocknet: 211 mg (83%) **6b**. Hellgelbe Kristalle. Schmp. 192,5–194°. IR: 3380*m*, 3010*w*, 2940*w*, 1785*s*, 1743*w*, 1668*s*, 1444*w*, 1390*m*, 1290*m*, 1260*w*, 1200*w*, 1160*w*, 1115*m*, 1105*w*, 1058*w*, 1000*w*, 965*w*, 900*w*, 872*m*, 755*w*, 725*w*. ¹H-NMR: 9,15 (br.*s*, NH); 3,36, 3,30 (2*s*, (CH₃)₂N); 1,80, 1,70 (2*s*, (CH₃)₂C). ¹³C-NMR: 170,7 (*s*, CF₃C=S); 165,9 (*s*, C(5)); 148,8 (*s*, C(2)); 116,3 (*s*, C=N); 58,9 (*s*, C(4)); 42,3, 41,9 (2*q*, (CH₃)₂N); 26,0, 23,8 (2*q*, (CH₃)₂CH). CI-MS: 240 ([*M*+1]*). Anal. ber. für C₉H₁₃N₅OS (239,30): C 45,17, H 5,48, N 29,27, S 13,40; gef.: C 44,96, H 5,30, N 28,97, S 13,20.

2.3. 5-(Dimethylamino)-3,4-dihydro-4,4-dimethyl-2-oxo-2H-imidazolium-(methylsulfonyl)thioformamidat (**6c**). Eine Lsg. von 180 mg (1 mmol) 5-(Methylsulfonyl)-1,3,4-thiadiazol-2(3H)-on (**5c**) in 5 ml DMF wurde mit 112 mg (1 mmol) **1a** versetzt, 2 h unter N₂ bei RT. gerührt, nach Zugabe von Et₂O das Produkt bei 4° gefällt, abfiltriert und i.HV. getrocknet: 277 mg (95%) **6c**. Farblose Kristalle. Schmp. 144,5–146°. IR: 3310m, 3110w, 2924w, 1784s, 1730w, 1660s, 1415w, 1404m, 1390m, 1292s, 1255m, 1200w, 1142s, 1104w, 1055w, 1005w, 990w, 968w, 954m, 932w, 895w, 867w, 752m, 715w, 700w. 'H-NMR: 9,14 (br.s, NH); 3,36, 3,30 (2s, (CH₃)₂N); 3,10 (s, CH₃SO₂); 1,73 (br.s, (CH₃)₂C). ¹³C-NMR: 1954 (s, CF₃C=S); 165,9 (s, C(5)); 149,2 (s, C(2)); 58,8 (s, C(4)); 42,2, 42,1 (2q, (CH₃)₂N); 39,3 (q, CH₃SO₂); 25,8, 23,7 (2q, (CH₃)₂C). MS: 292 (<1, *M*⁺), 155 (31), 154 (62), 140 (23), 126 (10), 111 (10), 99 (38), 98 (14), 83 (23), 79 (10), 72 (25), 71 (93), 70 (97), 69 (24), 64 (23), 59 (13), 58 (12), 47 (11), 45 (21), 44 (27), 43 (22), 42 (100), 41 (31). Anal. ber. für C₉H₁₆N₄O₃S₂ (292,38): C 36,97, H 5,52, N 19,16, S 21,93; gef.: C 37,00, H 5,45, N 19,28, S 21,89.

2.4. 5-(Dimethylamino)-3,4-dihydro-4,4-dimethyl-2-oxo-2H-imidazolium-trichlorothioacetamidat (6d). Eine Lsg. von 219 mg (1 mmol) 5-(Trichloromethyl)-1,3,4-thiadiazol-2(3H)-on (5d) in 5 ml i-PrOH wurde mit 112 mg (1 mmol) 1a versetzt, 2 h unter N₂ bei RT. gerührt und ausgefallenes Produkt abfiltriert. Aus der Mutterlauge wurde nach Abdampfen des Lsgm. durch Zugabe von Et₂O erneut Produkt ausgefällt. Gesamtausbeute 169 mg (54%) 6d. Hellgelbe Kristalle. Schmp. 196–198°. IR: 3430w, 3120m, 2996w, 1812s, 1740w, 1660s, 1470m, 1415m, 1388m, 1378m, 1310m, 1265w, 1170w, 1105w, 1088w, 1058w, 1070w, 1045w, 910w, 872m, 775m. ¹H-NMR: 9,10 (br.s, NH); 3,33, 3,30 (2s, (CH₃)₂N); 1,80, 1,70 (2s, (CH₃)₂C). ¹³C-NMR: 195,6 (s, CF₃C=S); 165,6 (s, C(5)); 149,1 (s, C(2)); 101,0 (s, CCl₃); 58,4 (s, C(4)); 42,2, 41,8 (2q, (CH₃)₂N); 25,4, 23,9 (2q, (CH₃)₂C). MS: 331 (<1, M^+), 288 (10), 270 (10), 246 (10), 245 (13), 243 (15), 213 (20), 211 (19), 210 (15), 154 (20), 140 (20), 125 (12), 87 (44), 85 (10), 84 (100), 83 (11), 72 (59), 71 (30), 70 (23), 69 (13), 68 (10), 58 (10), 56 (35), 50 (11), 45 (31), 44 (57), 43 (24), 42 (91), 41 (27), 40 (11). Anal. ber. für C₉H₁₃Cl₁N₄OS (331,65): C 32,59, H 3,95, N 16,89, S 9,67; gef.: C 32,55, H 4,10, N 17,08, S 9,96.

2.5. 5-(Dimethylamino)-3,4-dihydro-4,4-dimethyl-2-oxo-2H-imidazolium-methoxythioformamidat (**6**e). Eine Lsg. von 135 mg (1 mmol) 5-Methoxy-1,3,4-thiadiazol-2(3H)-on (**5**e) in 5 ml i-PrOH wurde mit 112 mg (1 mmol) **1a** versetzt, 2 d unter N₂ bei RT. gerührt, ausgefallenes Produkt abfiltriert, mit Et₂O gewaschen und i.HV. getrocknet: 208 mg (84%) **6e**. Farblose Kristalle. Schmp. 148–149,5°. IR: 3430w, 3200w, 3060m, 2990w, 2790w, 1785s, 1742w, 1660s, 1470m, 1460m, 1450m, 1415s, 1400m, 1375w, 1300m, 1260w, 1198m, 1175s, 1110w, 1055w, 1008w, 972w, 910w, 873m, 796w, 738w, 704w. ¹H-NMR: 8,87 (br. s, NH); 3,72 (s, CH₃); 3,35 (br.s, (CH₃)₂N); 1,72, 1,64 (2s, (CH₃)₂C). ¹³C-NMR: 193,7 (s, CH₃)₂C). MS: 244 (<1, *M*⁺), 155 (17), 154 (46), 140 (23), 99 (43), 98 (10), 97 (10), 83 (24), 72 (20), 71 (97), 70 (99), 69 (23), 58 (12), 57 (10), 56 (30), 44 (43), 43 (18), 42 (100), 41 (30). Anal. ber. für C₉H₁₆N₄O₂S (244,32): C 44,24, H 6,60, N 22,94, S 13,12; gef.: C 44,36, H 6,45, N 23,02, S 12,87.

Für die Röntgen-Kristallstrukturbestimmung wurde eine Probe von 6e aus i-PrOH/MeCN kristallisiert.

Die Umsetzung von 68 mg (0,5 mmol) 5e mit 60 mg (0,5 mmol) 1a in i-PrOH unter Rückfluss lieferte als einziges Produkt 61 mg (79%) 5-(Dimethylamino)-3,4-dihydro-4,4-dimethylimidazol-2-on [7].

2.6. 5-(*Dimethylamino*)-3,4-dihydro-4-isopropyl-4-methyl-2-oxo-2H-imidazolium-trifluorothioacetamidat (**6f/6f**'). Eine Lsg. von 170 mg (1 mmol) **5a** in 4 ml i-PrOH wurde mit 140 mg (1 mmol) **1c** versetzt und 1 d unter N₂ bei RT. gerührt. Nach Abdampfen des Lsgm. wurde der Rückstand mittels präp. DC (*Alox*,CH₂CL₂/MeCN 2:1) gereinigt und i.HV. getrocknet: 166 mg (54%) **6f/6f**' (*ca.* (2:1)-Gemisch (NMR)). Farblose Kristalle. Schmp. 220,5–223,5°. IR: 3430w, 3250m, 3140m, 2988m, 2940m, 2880w, 1772s, 1660s, 1448m, 1425m, 1395w, 1382w, 1340w, 1290s, 1180m, 1160m, 1135s, 1110m, 1065m, 1052w, 1020s, 958w, 930w, 910w, 876w, 832w, 762w, 754w, 715w, 704w. 'H-NMR: 9,12, 9,04 (2br.s, NH); 3,40, 3,36, 3,35, 3,26 (4s, (CH₃)₂CH). ¹³C-NMR: 186,1 (q, ²/(C,F) = 28,2, CF₃C=S); 166,5, 165,5 (2s, C(4)); 1,99, 0,97, 0,82 (3d, (CH₃)₂CH). ¹³C-NMR: 186,1 (q, ²/(C,F) = 28,2, CF₃C=S); 166,5, 165,5 (2s, C(5)); 150,7, 149,6 (2s, C(2)); 120,0 (q, ¹/₃/(C,F) = 278,7, CF₃); 65,6, 65,5 (2s, C(4)); 42,9, 42,2, 42,0, 41,9 (4q, (CH₃)₂N); 33,1, 32,8 (2d, (CH₃)₂CH); 22,9, 22,2, 18,3, 17,0, 16,7, 16,6 (6q, (CH₃)₂CH, CH₃-C(4)). CI-MS: 311 ([*M*+1]*). Anal. ber. für C₁₁H₁₇F₃N₄OS (310,35): C 42,57, H 5,52, N 18,06; gef.: C 42,77, H 5,48, N 18,32.

3. Hydrolysen der (1:1)-Addukte 3a, 6a und 6e. – 3.1. N-(5,5-Dimethyl-2,4-dioxoimidazolidin-3-yl)trifluoroacetamid (= 5,5-Dimethyl-3-(trifluoroacetamido)hydantoin, 7). Eine Lsg. von 200 mg (0,75 mmol) 3a und 3 ml wässr. 2n HCl in 4 ml MeOH wurde 2 h bei 55° gerührt. Nach Abdampfen des Lsgm. wurde der Rückstand mit ges. NaHCO₃ versetzt, erneut zur Trockene eingedampft, mit MeOH versetzt, filtriert und die Mutterlauge chromatographiert (Kieselgel, CH₂Cl₂/MeOH 1:20): 95 mg (53%) 7. Farblose, hygroskopische Kristalle. Schmp. 161–164,5°. IR: 3440m, 3335s, 3250s, 2992w, 2940w, 1770s, 1730s (br.), 1640w, 1470m, 1440s, 1385m, 1352m, 1300s, 1200m, 1148m, 1056w, 970w, 925m, 888w, 752w, 718s. 'H-NMR: 8,18 (br.s, NH); 1,26 (s, (CH₃)₂C). '¹³C-NMR: 1758, 155,5 (2s, 2 C=O); 56,4 (s, C(5)); 24,8 (q, (CH₃)₂C); die durch C,F-Kopplungen aufgespaltenen Signale der CF₃CO-Gruppe konnten nicht lokalisiert werden. MS: 240 (15, [M + 1]⁺), 184 (11), 144 (100), 69(9).

3.2. N-(5,5-Dimethyl-2,4-dioxoimidazolidin-3-yl)thiocarbamidsäure-O-methylester (5,5-Dimethyl-3-[(methoxythiocarbonyl)amino]hydantoin, **8**). Eine Lsg. von 150 mg (0,61 mmol) **6e** und 1 ml wässr. 2N HCl in 4 ml MeOH wurde 20 h bei RT. gerührt, das Lsgm. abgedampft, der Rückstand mit ges. NaHCO₃-Lsg. versetzt, mit CH₂Cl₂ ausgeschüttelt und die org. Phase eingedampft. Chromatographie mit MeOH/CH₂Cl₂ 1:4 ergab 78 mg (58%) **8**. Zähes Öl, das im Kühlschrank erstartte. IR (CHCl₃): 3445w, 3385w, 3250w (br.), 2995w, 2980w, 1800w, 1745s, 1480w, 1470w, 1453m, 1375w, 1325m, 1288m, 1148w, 1068w, 1003w, 965w, 910m. 'H-NMR (CDCl₃, 90MHz): 9,13, 7,00 (2br.s, 2 NH); 4,11 (s, CH₃O); 1,55 (s, (CH₃)₂C). ¹³C-NMR (CDCl₃): 192,5 (s, C=S); 174,5, 153,8 (2s, 2 C=O); 58,7 (s, C(5)); 58,0 (q, CH₃O); 24,6, 24,2 (2q, (CH₃)₂C). CI-MS: 218 [[M + 1]⁻).

3.3. 2-Methyl-2-{[5-(trifluoromethyl)-1,3,4-thiadiazol-2-yl]amino}propionsäure-methylester (9). Eine Lsg. von 100 mg (0,36 mmol) **6a** und 2 mł wässr. 2N HCl in 4 ml MeOH wurde 1 d bei RT. intensiv gerührt. Nach Abdampfen des Lsgm. wurde der Rückstand mit ges. NaHCO₃-Lsg. und CH₂Cl₂/MeOH 4:1 versetzt, die org. Phase abgetrennt und eingedampft. Chromatographie mit CH₂Cl₂ ergab 60 mg (60%) **9**. Farblose Kristalle. Schmp. 84,5–86°. IR: 3420w, 3305m, 3130w, 2970w, 1722s, 1675w, 1522s, 1475m, 1460m, 1440w, 1385w, 1366w, 1335m, 1325m, 1315w, 1303w, 1265s, 1225m, 1185m, 1168m, 1152m, 1108w, 1092m, 1063s, 1028m, 964w, 938w, 788w, 746w, 728w. ¹H-NMR (CDCl₃, 90 MHz): 5,84 (br. s, NH); 3,84 (s, CH₃O); 1,90 (s, (CH₃)₂C). ¹⁵C-NMR (CDCl₃): 181,2 (s, C=O); 157,9 (q, ²/(C,F) = 38,8, C(5')); 155,4 (s, C(2')); 119,3 (q, ¹/(C,F) = 273,2, CF₃); 54.8 (s, (CH₃)₂C); 52,1 (q, CH₃O); 28,9 (q, (CH₃)₂C). ¹⁵N-NMR (CDCl₃, cr(acac)₃): –1,7 (s, N(4')); –17,5 (s, N(3')); –277,5 (br.d, NH). CI-MS: 270 ([M + 1]⁺). Anal. ber. für C₈H₁₀F₃N₃O₂S (269,25): C 35,68, H 3,74, N 15,61; gef.: C 35,30, H 3,66, N 15,35.

In analoger Weise wurde **6a**[•] hydrolysiert und aufgearbeitet. **9**[•]: ¹³C-NMR (CDCl₃): 180,9 (*s*, C=O); 157,9 (*q*, ²*J*(C,F) = 39,8, C(5')); 155,32, 155,31 (*s*,*d*, ¹*J*(C,N) = 24,4, C(2')); 119,3 (*q*, ¹*J*(C,F) = 273, CF₃); 54,85, 54,84 (*s*,*d*, ¹*J*(C,N) = 11,8, (CH₃)₂C); 52,2 (*q*, CH₃O); 29,0 (*q*, (CH₃)₂C). ¹⁵N-NMR (CDCl₃): -278,1 (*d*, ¹*J*(N,H) = 92,5, NH).

4. Reduktion von 6a mit NaBH₄ zu 5,6,7,7a-Tetrahydro-7,7-dimethyl-2-(trifluoromethyl)imidazo[4,3-b][1,3,4]thiadiazol-5-on (10). Zu einer Suspension von 50 mg (0,18 mmol) 6a in 2 ml i-PrOH wurden 20 mg (0,53 mmol) NaBH₄ gegeben. Das Gemisch wurde 24 h bei RT. gerührt, das Lsgm. abgedampft, der Rückstand in CH₂Cl₂ aufgenommen, mit 2N HCl angesäuert und $4 \times \text{mit CH}_2$ Cl₂ extrahiert. Nach Abdampfen des CH₂Cl₂ wurde der Rückstand mittels präp. DC (Kieselgel, CH₂Cl₂/AcOEt 2:1) gereinigt und aus MeCN/ Et₂O umkristallisiert: 16 mg (38%) **10.** Farblose Kristalle. Schmp. 153–158°. IR: 3230w, 3180w, 2990w, 2980w, 2935w, 1730s, 1520w, 1476w, 1392w, 1375w, 1328m, 1302w, 1198m, 1155m, 1124w, 1102w, 1018m, 985w, 882w, 770w, 735w, 698w. ¹H-NMR (CDCl₃): 7,20 (br. *s*, NH); 5,97 (*s*, H–C(7a)); 1,54, 1,45 (2*s*, (CH₃)₂C). ¹³C-NMR (CDCl₃): 154,4 (*s*, C=O); 148,1 (*q*, ²J(C,F) = 40,1, C(2)); 118,5 (*q*, ¹J(C,F) = 273,9, CF₃); 81,8 (*d*, C(7a)); 58,4 (*s*, C(7)); 29,1, 26,8 (2*q*, (CH₃)₂C). MS: 239 (6, *M*⁺⁺), 155(100), 55(5), 42(20). Anal. ber. für C,H₈F₃N₃OS (239,22): C 35,14, H 3,37, N 17,57; gef.: C 36,01, H 3,67, N 17,54.

5. Synthese der 6-(Dimethylamino)-4,5-dihydro-1,2,4-triazin-3(2H)-one 4c und 4e. – 5.1. 6-(Dimethylamino)-4,5-dihydro-5-isopropyl-5-methyl-1,2,4-triazin-3(2H)-on (4c). In Analogie zu [22] wurde eine Lsg. von 280 mg (2 mmol) 1c und 208 mg (1 mmol) Carbazinsäure-ethylester in *ca*. 5 ml i-PrOH 66 h unter Rückfluss gerührt, ausgefallene Kristalle abfiltriert und mit i-PrOH und Et₂O gewaschen: 70 mg (18%) 4c. Farblose Kristalle. Schmp. 296–298°. Aus der Mutterlauge wurden mittels präp. DC (CH₂Cl₂/MeOH 8:1) weitere 138 mg (35%) 4c gewonnen (Gesamtausbeute 53%).

5.2. 6-(Dimethylamino)-4,5-dihydro-5-methyl-5-(propen-2-yl)-1,2,4-triazin-3(2H)-on (4e). Eine Lsg. von 138 mg (1 mmol) 1e und 104 mg (1 mmol) Carbazinsäure-ethylester in ca. 5 ml i-PrOH wurde 52 h unter Rückfluss gerührt, in CH₂Cl₂ aufgenommen, über eine kurze Kieselgelsäule filtriert und mittels präp. DC gereinigt: 17 mg (9%) 4e. Farblose Kristalle. Schmp. 246–250°.

6. Röntgen-Kristallstrukturbestimmung von 6a und 6e (s. Fig. $1-4)^5$). – Die Intensitätsmessungen wurden auf einem Nicolet-R3-Diffraktometer bei RT. mit MoK_a-Strahlung im a-scan durchgeführt. Die Intensitäten der Reflexe wurden den üblichen Korrekturen unterworfen; auf eine Absorptionskorrektur wurde verzichtet. Die Position des S-Atoms wurde jeweils mit der Patterson-Methode bestimmt. Bei 6a wurde diese Information zur Auswahl der besten 'E-map' aus dem SHELXS-86 [33] verwendet. Die Strukturaufklärung unter Verwendung von Fourier-Techniken und die Verfeinerungen (geblockte Kaskaden-verfeinerung mit ca. 100 Variablen/Block) erfolgten mit dem Programmsystem SHELXTL [34]. Die schwereren Atome wurden anisotrop verfeinert. Alle H-Atome konnten durch Differenzelektronendichteberechnungen lokalisiert werden; es wurde jedoch nur H-N(3) frei verfeinert, die CH₂-Gruppen dagegen als starre Gruppen. Für die CF₂-Gruppe, die ebenfalls als starrer Körper verfeinert wurde, wurden zwei unterschiedliche Lagen der F-Atome lokalisiert, die zu je ca. 50% populiert sind. Geringe Restelektronendichten deuten darauf hin, dass die ungeordnete CF₃-Gruppe durch die beiden verwendeten Orientierungen nicht exakt beschrieben wird. Die Strukturaufklärung von 6e unter Verwendung von Fourier-Techniken und die Verfeinerungen (geblockte Kaskadenverfeinerung mit ca. 100 Variablen/Block) erfolgten mit dem Programmsystem SHELXTL [34]. Die schwereren Atome wurden anisotrop verfeinert. Alle H-Atome wurden durch Differenzelektronendichteberechnungen lokalisiert und mit isotropen Temperaturfaktoren verfeinert, mit Ausnahme der H-Atome der (CH,), N-Gruppe, die in berechneten Positionen mitgeführt wurden ('riding model').

Die räumliche Struktur der Moleküle **6a** und **6e** ist jeweils aus der entsprechenden Stereoprojektion (*Fig. 1* bzw. 3) ersichtlich.

	ба	бе
Kristallisiert aus	MeCN	i-PrOH/MeCN
Kristallfarbe	farblos	farblos
Kristalltemp. (ca.) [K]	294	294
Raumgruppe	Pca2, orthorhombisch	Pbca orthorhombisch
Ζ	4	8
Atome in der asymmetrischenEinheit Formelgewicht	C ₉ H ₁₃ F ₃ N₄OS 282,29	C ₉ H ₁₆ N ₄ O ₂ S 244,3

Tab. 3. Kristallographische Daten der dipolaren (1:1)-Addukte 6a und 6e

⁵) Die Ortskoordinaten der Atome, Bindungslängen und -winkel können beim Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England, angefordert werden.

14,063(4)	10,994(2)
7,358(1)	13,118(3)
12,668(4)	16,738(4)
1310,9(6)	2414(1)
1,430	1,344
50°	46°
1709	1538
825	1157
$I > 2,5\sigma(I)$	$l > 2,5\sigma(l)$
212	192
0,045	0,049
0,048	0,051
$(\sigma^{2}(F)+0,00121F^{2})^{-1}$	$(\sigma^{2}(F)+0,00061F^{2})^{-1}$
	14,063(4) 7,358(1) 12,668(4) 1310,9(6) 1,430 50° 1709 825 $I > 2,5\sigma(I)$ 212 0,045 0,048 $(\sigma^{2}(F)+0,00121F^{2})^{-1}$

Tab. 3. (Forts.)

^a) Zur Berechnung der Zellkonstanten wurden je 25 automatisch zentrierte Reflexe mit $10^{\circ} < 2\theta < 26^{\circ}$ bzw. $20^{\circ} < 2\theta < 25^{\circ}$ verwendet.

LITERATURVERZEICHNIS

- H. Heimgartner, Chimia 1979, 33, 111; Isr. J. Chem. 1981, 21, 151; Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Naturwiss. Reihe 1983, 32, 365.
- [2] S. Chaloupka, P. Vittorelli, H. Heimgartner, H. Schmid, H. Link, K. Bernauer, W. E. Oberhänsli, *Helv. Chim. Acta* 1977, 60, 2476.
- [3] H. Link, K. Bernauer, S. Chaloupka, H. Heimgartner, H. Schmid, Helv. Chim. Acta 1978, 61, 2116.
- [4] B. Scholl, J. H. Bieri, H. Heimgartner, Helv. Chim. Acta 1978, 61, 3050.
- [5] G. Mukherjee-Müller, S. Chaloupka, H. Heimgartner, H. Schmid, H. Link, K. Bernauer, P. Schönholzer, J. J. Daly, *Helv. Chim. Acta* 1979, 62, 768.
- [6] S. Chaloupka, J. H. Bieri, H. Heimgartner, Helv. Chim. Acta 1980, 63, 1797.
- [7] B. P. Chandrasekhar, J. H. Bieri, H. Heimgartner, G. Germain, J.-P. Declercq, *Heterocycles* 1982, 19, 2079.
- [8] M. Dähler, R. Prewo, J. H. Bieri, H. Heimgartner, Helv.Chim. Acta 1982, 65, 2302.
- [9] M. Dähler, R. Prewo, J. H. Bieri, H. Heimgartner, Helv.Chim. Acta 1983, 66, 1456.
- [10] M. Schläpfer-Dähler, R. Prewo, J. H. Bieri, H. Heimgartner, Heterocycles 1984, 22, 1667.
- [11] R. Prewo, J. H. Bieri, H. Heimgartner, Chimia 1985, 39, 298.
- [12] B. Hostettler, J. P. Obrecht, R. Prewo, J. H. Bieri, H. Heimgartner, Helv. Chim. Acta 1986, 69, 298.
- [13] S. M. Ametamey, R. Prewo, J. H. Bieri, H. Heimgartner, J. P. Obrecht, Helv. Chim. Acta 1986, 69, 2013.
- [14] J. P. Obrecht, P. Schönholzer, Ch. Jenny, R. Prewo, H. Heimgartner, Helv. Chim. Acta 1988, 71, 1319.
- [15] S. M. Ametamey, R. Hollenstein, H. Heimgartner, Helv.Chim. Acta 1988, 71, 521.
- [16] S. M. Ametamey, Dissertation, Universität Zürich, 1989.
- [17] M. Schläpfer-Dähler, Dissertation, Universität Zürich, 1989.
- [18] U. Schmid, Dissertation, Universität Zürich, 1978; U. Schmid, H. Heimgartner, H. Schmid, P. Schönholzer, H. Link, K. Bernauer, *Helv. Chim. Acta* 1975, 58, 2222; U. Schmid, H. Heimgartner, H. Schmid, W. E. Oberhäusli, *ibid.* 1976, 59, 2768; U. Schmid, H. Heimgartner, H. Schmid, *ibid.* 1979, 62, 160.
- [19] E. Schaumann, E. Kausch, W. Walter, Chem. Ber. 1974, 107, 3574; ibid. 1977, 110, 820; E. Schaumann,
 S. Grabley, Liebigs Ann. Chem. 1978, 1568.
- [20] S. Chaloupka, H. Heimgartner, H. Schmid, H. Link, P. Schönholzer, K. Bernauer, Helv. Chim. Acta 1976, 59, 2566.
- [21] E. Schaumann, S. Grabley, K.-D. Seidel, E. Kausch, *Tetrahedron Lett.* 1977, 1351; E. Schaumann, E. Kausch, J.-P. Imbert, K.-H. Klaska, R. Klaska, *J. Chem. Soc., Perkin Trans.* 2 1977, 466; E. Schaumann, E. Kausch, S. Grabley, H. Behr, *Chem. Ber.* 1978, 111, 1486.

- [22] H. Link, Helv. Chim. Acta 1978, 61, 2419.
- [23] H. Kristinsson, T. Winkler, M. Mollenkopf, Helv. Chim. Acta 1983, 66, 2714.
- [24] H. Heimgartner, Habilitationsschrift, Universität Zürich, 1979.
- [25] H. Kristinsson, T. Winkler, Helv. Chim. Acta 1982, 65, 2606.
- [26] K. Dietliker, H. Heimgartner, Helv. Chim. Acta 1983, 66, 262.
- [27] P. Wipf, H. Heimgartner, Helv. Chim. Acta 1986, 69, 1153.
- [28] G. A. Morris, R. Freeman, J. Am. Chem. Soc. 1979, 101, 760.
- [29] P. Wipf, Dissertation, Universität Zürich, 1987.
- [30] Ch. Jenny, H. Heimgartner, Helv. Chim. Acta 1986, 69, 374.
- [31] P. Tromm, H. Heimgartner, Helv. Chim. Acta 1988, 71, 2071.
- [32] M. Rens, L. Ghosez, *Tetrahedron Letters* 1970, 3765; L. Ghosez, J. Marchand-Brynaert, in 'Iminium Salts in Organic Synthesis', Eds. H. Böhme und H. G. Viehe, Vol. 9, Part 1 von 'Advances in Organic Chemistry', Ed. E. C. Taylor, Wiley, New York, 1976, S. 421.
- [33] G. M. Sheldrick, SHELXS86, A Program for the Solution of Crystal Structures from Diffraction Data, 1986.
- [34] G.M. Sheldrick, SHELXTL, An integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, version 5.1, 1986.